From Design to Redesign *

Gerhard Fischer
Andreas C. Lemke
Christian Rathke

CU-CS-368-87

e N

Irs
M’JUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by: Grant No. NO0014-85-K-0842 from the Office of Naval Research, Grant No. DE-FG02-84FR1328
from the Department of Energy, the German mistry for Research and Technology, and Triumph Adler Corporation, Nuernberg,

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1987 2. REPORT TYPE 00-00-1987 to 00-00-1987
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

From Design to Redesign 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80301

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 11
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

From Design to Redesign

Gerhard Fischer
Andreas C. Lemke
Christian Rathke

CS-CU-368-87 June 1987

Department of Computer Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309

This research was supported by: Grant No. N00014-85-K-0842 from the Office of Naval Research,
Grant No. DE-FG02-84ER 1328 from the Department of Energy, the German mistry for Research and
Technology, and Triumph Adler Corporation, Nuernberg.

FROM DESIGN TO REDESIGN

Gerhard Fischer, Andreas C. Lemke, Christian Rathke

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Campus Box 430
Boulder, CO 80309

ABSTRACT

Software Engincering environments have to support design methodologies
whose main activity is not the generation of new independent programs, but
the maintenance, integration, modification and explanation of existing ones.
Especially for software systems in ill-structured problem domains where
detailed specifications are not available (like Artificial Intelligence and
Human-Computer Communication), incremental, evolutionary redesign has
to be efficiently supported.

To achieve this goal we have designed and constructed an object-oriented,
knowledge-based user interface construction kit and a large number of
associated tools and intelligent support systems to be able to exploit this kit
effectively. Answers to the ‘‘user interface design question’’ are given by
providing appropriate building blocks that suggest the way user interfaces
should be built. The object-oriented system architecture provides great
flexibility, enhances the reusability of many building blocks, and supports
redesign. Because existing objects can be used either directly or with minor
modifications, the designer can base a new user interface on standard and
well-tested components.

1. Introduction

Human-computer communication and knowledge-based systems are two
research domains consisting mostly of ill-structured problems. In these
domains it is seldom possible to provide a precise specification of intent;
and without this specification, correctness is in general not a meaningful
question. The main difficulty is not "correct” implementation of given

specifications, but development of specifications that lead to effective solu-

tions corresponding to real needs. In [Fischer, Schneider 84] we argued that
life cycle models are inadequate for ill-structured problems and should be
replaced by incremental design and a rapid prototyping methodology based
on a communication model. Construction kits and support tools that allow
the exploration of alternatives can considerably enhance this approach.

Redesign is a methodology which achieves that the prototyping process is
rapid and it allows us to explore design alternatives for a problem. In
addition, it supports that existing systems can be adapted to new require-
ments and can be tailored to special needs of individual users and user
communities. Our redesign methodology is based on a construction kit (see

Figure 2-1) which provides as building blocks the abstractions expected to -
In the domain of human- |

be relevant for exploring the design space.
- computer communication and user interfaces, primitives such as windows,
menus, icons and editors are the basis for specific applications. Over the
last six years we have designed, implemented and continuously enhanced a
system for this domain called WLISP [Fabian 86, Boecker, Fabian, Lemke

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
. permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

851", wiisp’s flexibility as a construction kit is provided by its object-
oriented architecture. It contains a large amount of knowledge about the
design of user interfaces. Additional knowledge is represented in support
systems that guide the design process and critique intermediate results.

An especially interesting feature of WLISP is that it is one of the few systems

. implemented in a time sharing environment. It is currently running in

FranzLisp and ObjTalk {Rathke 86} on VAX systems using powerful ter-
minals and is not restricted to high performance personal computers. This
environment provided both the necessity and the opportunity for im-
plementing a distributed architecture between terminal and main {rame.

From a designer’s viewpoint, WLISP provides a visually based, interactive
programming environment [Barstow, Shrobe, Sandewall 84]. WLISP has
been an everyday operational environment at a number of institutions

. within universities and research organizations for several years. WLISP has

served the designers of user interface software as well as the end-users.

Figure 1-1 describes our vision of the architecture of an intelligent design
environment. This architecture is based on the belief that the
“‘intelligence’’ of a complex tool must contribute to its ease of use. Truly

Yisualization
Components

Explanation
Components ¢

Analysis
System

Figure 1-1: Architecture of a design environment

*The system was named WLISP because its development began 8 years ago with the goul of
" providing a window-based programming environment for LIsP.

intelligent and knowledgeable humans, such as good teachers, use a sub-
stantial part of their knowledge to explain their expertise to others. In the
same way, the ‘‘intelligence’ of a computer system should be used to
provide effective communication. We have built prototypical systems in
many areas of the outer circle: documentation systems [Fischer, Schneider
841, help systems [Fischer, Lemke, Schwab 85], critics [Fischer 87], and
visualization tools [Boecker, Fischer, Nieper 86].

In the following sections we illustrate the redesign process with a case
study, describe the WLISP system and a prototypical design support tool
(TRIKIT) and evaluate the strengths and weaknesses of our approach. In the
last section we briefly describe ideas for future developments.

2. From Design to Redesign

Many large software systems are built as in Figure 2-1-a; a monolithic
system is completely implemented in a general purpose programming lan-
guage. Although these systems are usually structured in some way, this
structure is oriented only towards the original specification of the problem.
To overcome the difficulty of redesign that has been experienced with these
systems, the design of one (or more) intermediate levels of abstractions
must be an integral part of the software process (Figure 2-1-b). This
strategy allows for both easy redesign by modifying the original design
(Figure 2-1-c) and reuse by recombining the intermediate abstractions to
form a different system (Figure 2-1-d).

Software Engineering environments of the future have to support design
methodologies whose main activity is not the generation of new, inde-
pendent programs, but the integration, modification, and explanation of ex-
isting ones {Winograd 79]. Just as one relies on already established
theorems in a new mathematical proof, new systems should be built as
much as possible using existing parts. In order to do so, the designer must
understand the functioning of these parts. An important question concerns
the level of understanding necessary for successful redesign: exactly how
much does the user have to understand? Our methodologies (differential
programming and programming by specialization [Kay 84] based on our
object-oriented knowledge representation language ObjTalk; see Section

programming
language component system
level level level

a) monolithic
design:

new systems B

are based on general-purpose programming language

b) construction <
Kits: B~
creating ‘:’,,,_,.—'ﬂ*
intermediate B

abstractions

c) redesign:
an existing system
is modified by
replacing

. components

d) reuse:
existing components are é
reused to form new, ~ %

independent systems

Figure 2-1: Reuse and redesign

i
i

3.2) and support tools (e.g., the BROWSER; see Section 4.1) are steps in the

~ direction of making it easier to modify an existing system than to create a

new one. Inheritance is important for redesign because it enables objects
that are almost like other objects to be created easily with a few incremental
changes. Inheritance reduces the need to specify redundant information and

. simplifies updating and modification by allowing information to be entered
* and changed in one place.

A construction kit with a large number of generally useful building blocks
provides a good basis for redesign. Simon [Simon 81] demonstrates that the
evolution of a complex system proceeds much faster if stable intermediate
parts exist. The abstractions, represented in WLISP by more than 200
ObjTalk classes, comprise stable intermediate parts for development of user
interfaces. The large number of classes in WLISP is a mixed blessing. The
advantage is that in all likelihood a building block or set of building blocks
that either fits our needs or comes close to doing so already exists and has
already been used and tested. The disadvantage is that they are uscless
unless the designer knows that they are available. Informal experiments
[Fischer 87} indicate that the following problems prevent designers from
successfully exploiting the potential of high functionality systems:

* designers do not know about the existence of needed objects
(either building blocks or tools);

* designers do not know how to access objects;

* designers do not know when to use these objects;

¢ designers do not understand the results objects produce for
them;

* designers cannot combine, adapt and modify an object for their
specific needs.

Unless we are able to solve these problems, designers will constantly rein-
vent the wheel instead of taking advantage of already existing tools.

3. Description of WLISP

Our ideas, models and theories about the design of human-computer inter-
faces have become operational with the development of WLISP. The struc-
ture of the WLISP system defines a way of looking at and dealing with user
interfaces. For users it provides a consistent world in which they can
transfer interaction techniques among applications. For designers it
provides a set of basic building blocks from which they can choose in
designing a specific application.

3.1. A User’s View

As a whole, WLISP can be described as a world with which the user interacts
by screen manipulation. The system is reactive in the sense that each object
on the screen exhibits a certain type of behavior. Actions that change the
common world of user and system can be invoked either by the system
(e.g., by updating some information about the state of an application) or by
the user (e.g., by selecting some command from a menu). The designer
using WLISP or the user of a specific application system deals with screen
objects such as windows, icons, menus and buttons (sce Figure 3-1), that arc
manipulated using the mouse as a pointing device. Many screen objects are
independent of specific applications and serve as basic building blocks for
different applications.

The user’s view, which, depending on the task, is either that of a software
engineer or an end-user is shown in a typical screen image of WLISP Figure
3-1:
* At the top of the screen some status information is shown. It
is is updated continually by the underlying UNIX operating sys-
tem. The status line displays time, load average, and number of
users and tells about incoming and pending mail.

* A LISP interpreter is running in the toplevel window. Cur-
rently it displays the ObjTalk-Definition of a character object.
On the right-hand side of the toplevel window a static menu is
visible,

* Different systems can be activated by selecting the appropriate
icon from the Catalog. The Catalog tells users which systems
are available.

(ask ,bg-char
renake:
» iconssbrousericon
with:
yupdate
rupdate
yad just
xad just

YAESTLE

HI KOO
CONSTRUCTIO!
KIT

LISP GRUGE

O
copy&move

move

move-out
reshape
newshape

tobottom

totop

refresh
bgupload
3 find class def
shrink-to-icon
window-snapsho

load-icon-character

save- lcon-character &%3

Joad-font-character

save~font-character
#tinish-font

shou-as-background

change-gr id
change-char-dats

Figure 3-1: The user’s view of WLISP

¢ At the bottom of the screen a Character-Editor window is
shown that supports the definition of icons, All icons on the
screen have been defined with the Character-Editor.

e A window-menu is associated with each window. It contains
the basic operations on windows. Pressing a mouse button
inside a window activates a pop-up menu with operations for
the application itself. In the Character-Editor this menu dis-
plays operations to manipulate the pixel image of the character
object.

¢ Some of these operations are also accessible through buttons
on the right margin. Menus and buttons are alternative ways to
perform the same operations.

e The directory-editor window gives access to the UNIX file sys-
tem. It contains files of a certain directory.

e The Catalog and the Character-Editor windows have scroll
bars on their right and lower sides. Windows in general show
only a rectangular part of some larger region. Scrolling means
to move this region below the window.

¢ Windows can be shrunk to icons when they are not needed.
Some of them are shown on the right side. Icons are visual
reminders of systems, functions and windows. They are or-
ganized in clusters that determines their spatial layout.

¢ In the mouse-documentation-window at the bottom of the
screen information about mouse actions is displayed. As the
user moves the mouse over windows, buttons or icons, this
information is updated.

The association of applications with windows allows for an arbitrary num-
ber of applications to run at the same time. The user has direct access to
each of them. WLISP provides a means for their integration.

3.2. A Designer’s View

The components of WLISP are implemented in ObjTalk, an object-oriented
knowledge representation language [Rathke 86]. Control is expressed in
terms of a message passing among objects [Hewitt 77]. Objects behave
based on the interpretation of messages and their internal state.

Objects are organized in classes. Objects of the same class - the instances
of that class - have the same methods ahd slots and show the same type of
behavior. Classes are arranged in hierarchies. They share the properties
(i.e., methods and slots) of their parent classes. In this way properties are
inherited by classes. All classes together form an inheritance hierarchy
with a special class at the root called OBJECT. The fundamental properties
of all objects are defined in OBJECT. They can be modified or extended in
any of its subclasses.

constrained
selective display movements

of parts of the of nodes

automatic fayout graph " s
planning ‘ hightighting

selective display TERARGHT ‘ NO&E';({{J v T g:glm-m%f-
of parts of the (MIKIN)

graph editing BORDER
e b
;
WINDOW-REPR TEXT-REDD

graph editing
UNIX-DIRECTORY:
WINDOW
tax -
o .
Figure 3-3: The TRISTAN classes

All components of WLISP are organized in inheritance hierarchies of classes. Four categories of WLISP system classes can be identified:
Classes describe screen objects such as windows or menus and components 1. Basic system classes. These classes describe rectangular

of screen objects such as borders, titles and buttons. areas on the screen such as regions, borders and titles. They

are combined to construct output windows, text windows or
dialogue windows. Superwindows act on subscreens, which
can contain multiple subwindows. The inheritance hierarchy

The design, development and use of WLISP have shown that the object-
oriented architecture together with well established components and build-

ing blocks are extremely useful for the design of user interfaces. WLISP of the basic system classes is shown in Figure 3-2.

classes provide a set of abstractions on which the designer can rely. Exist-
ing systems like menus, icons, the directory editor, the character-editor, and 2. Basic components of the u:‘;er.mtgrl‘ace construction kit,
the catalog serve as examples for the construction new user interfaces. The These classes form the application-independent parts of the
object-oriented architecture supports the reuse of components and building user interface. Menus, icons, buttons, scroll bars, etc. inherit
blocks. properties from the basic system classes. Parts of them can

also be used as building blocks for application systems,

3. Advanced components of the user interface construction
kit. TRISTAN [Nieper 85] is an example of a complex com-
ponent providing high-level abstractions for displaying and

editing graph structures through direct manipulation.

Figure 3-3 shows the elements of TRISTAN as applied to a
graphic UNIX directory editor. TRISTAN is independent of the
particular node representation. It assumes only that the node
representation is a subclass of the simple-display-
region window class.

INT: STHPLE-
DISPLAY-REG]

SINPLE-DISPLAY-
REGTON

4. Application systems. Application systems use the com-
ponents of the interface construction kit in different ways.
Menus, icons, buttons or dialogue windows can be used
directly within an application system. Other classes serve as a
source from which properties are inherited. Applications
usually define their own classes that incorporate the existing
functionality by inheritance.

The reuse of WLISP system classes by means of inheritance and combination
is supported by the object-oriented architecture:

* The creation of subclasses of existing classes allows the desig-
ner to create new objects that differ from existing objects in
some desired aspects (e.g., different methods for some mes-
sages, additional slots) but that inherit almost all of the
functionality of their ancestors.

\ .
* The use of predefined components is not an all-or-nothing deci-

(sveer-smroa) sion. If the component has one undesired property, this com-
ponent need not be completely abandoned. Even if the be-
Figure 3-2: The basic window classes havior of a superclass is to a very large extent undesired, it can

still be used by shadowing all but the useful properties.

\

e Subclasses are not modified, independent copies of their super-
classes. They benefit from any augmentations of their super-
classes.

* Extensions can be done on different levels of the hierarchy,
thereby affecting selected classes of objects.

e Like other object-oriented languages, ObjTalk supports
dynamic modification of classes. Slots can be added without
recompilation of other software. This not only makes rapid
prototyping easier but also supports modifications by the end
user.

¢ Each method can be a hook for modifying behavior. Methods
can be augmented by adding procedures to be executed before,
after, or instead of existing methods.

These architectural principles support new programming methodologies
such as differential programming and programming by specialization and
analogy, which is crucial to a redesign approach to system development.

4. A Case Study in Redesign

In this section we describe a prototypical task, the redesign of the interface
to the ObjTalk Browser [Rathke 86] and how problems in redesigning this
interface were solved by exploiting the architectural properties of WLISP.

4.1. The ObjTalk BROWSER

To accomplish our main goal, which is to facilitate the redesign of software
and avoid building it from scratch, information retrieval tools for revsable
software components like ObjTalk classes have become an absolute neces-
sity. Browsers have become increasingly valuable for understanding and
changing systems. They displace program listings because they present a
program as a multidimensional structure being generated and filtered
dynamically, In SMALLTALK [Goldberg 841, the browser is the main inter-
face to the system and is used both for finding and analyzing existing picces
of software and for modifying and creating new software, It replaces the
file system and the editor of conventional systems. The interaction style is
one of moving and searching through an information space rather than
directly accessing the space through names or descriptions.

The WLISP BROWSER displays the inheritance structure of a system. The
interconnections between the system and the components it inherits from
can be analyzed in more detail by selecting a component and looking at its
slot descriptions, defaults, triggers, and methods (Figure 4-1).

The BROWSER exhibits some of the more advanced interface characteristics
provided by WLISP. The main window is divided into several subwindows
whose relationship is automatically maintained by WLISP and displayed in
paned windows. Inside the Classes Window ObjTalk classes can be
visualized by icons and are connected by arrows to show the superclass
relationship. Selecting a class icon causes the other BROWSER windows to
be filled with slots, methods, subclasses and instances of that class. This
feature is impicmented using the constraint mechanism of ObjTalk.

4.2. Description of the Redesign Process

The BROWSER had undergone several redesigns before it took its current
shape. In an earlier development stage classes were represented as items of
a scrollable menu (Figure 4-2). We describe the process of redesigning the
menu-based BROWSER to show iconic representations for ObjTalk classes
instead.

The Task. Instead of classes being visualized by strings in a scrollable
menu, we would like to display classes as icons that are connected by
arrows to show the superclass relationship. Everything else should stay
unchanged, especially the dependencies between the selected class and the
contents of the other windows.

The Redesign. The class of the window to be replaced (BROWSER-CLASSES-
MENU) has two superclasses (Figure 4-3); BROWSER-SELECTION-MIXIN and
CLASSES-MENU, BROWSER-SELECTION-MIXIN provides BROWSER-CLASSES-
MENU with the application-dependent knowledge. It describes how the
consequences of a class selection are propagated to the other BROWSER
windows. CLASSES-MENU provides . BROWSER-CLASSES-MENU with the
knowledge for scrolling and menu selection. The redesign consists of

for simpie-manager-mixin O

Slots
os~winds
subwindouws
top-nenu

Inside-region:
add-window:
jdelete-window:
totop-window:
tobottom-windo
bury-window:
eposition-win
erase-window:
up~window:
doun‘ul?dgu:
INPLE- Jremove~window:
WK Jopdate-content
red| splay~subw

degxpose:

SIHFLE-HANAGER-
HEXIN

screen-nixin
scrol | ~nanager

M-TITLE-
TON-HIRIN

SHRY!
BUTI

Figure4-1: The BROWSER with windows to show the class
hierarchy, methods, slots, instances and subclasses
of a selected class

tlethods

[cTass-select
c! ass-select
subclass-sel
method~selec
instance-sel |subclasses:
slot-selectt | Instances:

classess

window-icon-mixin
paned-window
object

pane-mixin
super-window

EHHElE!Eﬁlllllllﬂ&!ﬂﬂ!!!lllllll
jclass-browse

Figure 4-2: The original BROWSER

CLASSES-
[:nsnu-nxxln:] (}CRULL‘“E"Q)

BROMSER-
SELECTION-HIXIN || CLRSSES-HENU

BROHSER-
CLASSES-HENU

Figure 4-3: The inheritance hierarchy of BROWSER-CLASSES-MENU

replacing this class by a new one, thereby maintaining the important inter-
active properties of selecting, adding and deleting classes.

In order to find out about the desired properties of the new class we take a
closer look at the definition of BROWSER-CLASSES-MENU (Figure 4-3):

SCROLL-MENU is combined with CLASSES-MENU-MIXIN o form the CLASSES-
MENU class. Windows of this class are able to display classes as strings.
BROWSER-CLASSES-MENU is constructed by mixing BROWSER-SELECTION-
MIXIN in with CLASSES-MENU.

In BROWSER-SELECTION-MIXIN the dependencies between the selected class
and the other BROWSER windows are represented: Whenever a class is
sclected, the contents of these windows will be updated to display methods,
slots, subclasses and instances of the selected class. Because this
functionality is not to be changed, we can use BROWSER-SELECTION-MIXIN
without any modifications.

Instcad of SCROLL-MENU we use SIMPLE-WINDOW as the basis for the new
window. Simple windows provide the basic window capabilities of graphi-
cal windows in which icons can be placed and lines can be drawn. It sets up
a coordinale system with its origin at the lower left corner. Scrolling the
contents of a simple window is interpreted as moving the origin of the
graphic coordinate system. CLASSES-MENU-MIXIN is replaced by a new
mixin class (CLASS-NET-WINDOW-MIXIN) that specifies methods for selec-
tion, addition and deletion of classes. These operations are different from
the ones in the preexisting implementation because they now have to dis-
play, add and delete icons and connect them by arrows (Figure 4-4).

CLASS-NET- SIMPLE-
HINDOH-HININ HINDOM

BROHSER- CLASS-NET~
SELECTION-HIXIN HINDOW

BRONSER-NET
HINDOW

Figure 4-4: The inheritance hierarchy of BROWSER-NET-WINDOW

The implementation of the functionality for CLASS-NET-WINDOW-MIXIN
would be a difficult task if there were no support for manipulating icons that
contain text and that are connected by lines. Icons are an integrated part of
the WLISP system. There are components that deal with text manipulation
within icons (e.g., hyphenation and adjustment to the horizontal and vertical
center), borders of various shapes and selection feedback. Also, the
capability of connecting icons by arrows is supplied by a number of classes
from WLISP’s net package.

As the final step, the new class CLASS-NET-WINDOW-MIXIN is combined with
SIMPLE-WINDOW to form CLASS-NET-WINDOW. Together with BROWSER-
SELECTION-MIXIN the' final BROWSER-NET-WINDOW is constructed (Figure
4-4).

5. Intelligent Support Tools for Reuse and Redesign

In addition to suitable languages and system architectures, support systems
are necessary to enhance reuse and redesign processes. Rich computing
environments contain at least hundreds of components that can be combined
in many different ways. The existence of a component alone does not
guarantee that it is readily available and that its usefulness is apparent,
Therefore, support tools are needed that have knowledge about the structure
of systems and about the use of existing facilitics, that aid in making design
decisions, carry out low level details, analyze or criticize intermediate ver-
sions, and visualize their structure. We will call these support tools design
kits.

In this section we describe TRIKIT as an example of this type of systems (for

a detailed description see [Fischer, Lemke 87]). TRIKIT supports design and
redesign of network displays and editors. With its knowledge of this task
domain it can aid the designer by automatically offering interesting design
choices, selecting appropriate components, and combining them to make a
functioning system. The designer needs much less knowledge and is able to
produce higher quality results in shorter time.

Name of relation: Inheritance-hlerarchy:
An item Is called at
Name of child relation:
Name of parent relatlon:
Default layout direction: horizontal
Evaluate item name? Yes
Compare items by:
Pname selector for Items: general-get-pname.
Create an unlinked item with name “name™:

The window has a default size? No
Width: 500--0 Height: 400

Types of items:

tristan-system. ;-]
[Lreate Zysten and Tnstantiatel] Erun Systenl]

>> > < L

.

<some_inher itance-hierarchy-window)

Figure 5-1: Initial state of the main form and an
inheritance hierarchy window generated from it

The display and modification of hierarchical and network structures is a
common problem in application systems including those that deal with
structures of databases, directory trees, inheritance hierarchies, or depen-
dency graphs are examples. TRISTAN, the user interface component
described in Section 3.2, is a large set of object-oriented construction com-
ponents that is applicable to many different types of graphical represen-
tations. . We have used it to graphically display UNIX file system hierarchies,
inheritance networks in object-oriented languages, and dependency relation-
ships between rules in rule-based expert systems,

TRIKIT is a design kit for combining the TRISTAN components with a
specific application. It presents itself to the user as a collection of inter-
action sheets as shown in Figures 5-1 (top window) and 5-2. On these
interaction sheets the designer specifies the interface to the application. The
designer specifies in terms of the application what it means to create and
delete a node or to insert and remove a link, Here the designer chooses the
desired graphical representation for the nodes of the graph and controls the
creation of the user interface. This design process is carried out above the
code level. TRIKIT hides from the designer program code that is generated
when the network editor is created or modified.

Initially, the form is filled in with an example application - an ObjTalk
inheritance hierarchy viewer; the window at the bottom of Figure 5-1 shows
an instance. This allows users to familiarize themselves with TRIKIT and to
modify parameters and explore their significance. The system supports
redesign by providing designers with prototypical solutions and allowing
them to take advantage of as much previous work and knowledge as pos-
sible.

Designers using TRIKIT need to know very little about the TRISTAN com-
ponent. However, they do need to fill in code to access the application, for
example, to retrieve the nodes of the graph, or to signal events that changed
it. In addition to the specification of the application interface, many options
of TRIKIT can be controlled. The representation of different types of nodes
of the graph (different fonts, sizes, the use of pictorial representations) or

)

example item L O Dyl

Name of Item type: example Item.):.-

Exprassion to check whether "item” iz of this typ

Can the parents for a glven Item ba computed? Yes
Compute the list of parents for “jtem

(ask ,item superc):-:-
ls the order of the parents significant? No
Can the children for a given item ba computed? Yes
Compute the list of children for “item™:

(ask ,item subclasses)-::-

is the order of the children significant? No
item representation: string-reglon
Label =
(ask ,ltem pname)-.-:-
Items =

Its font: mini
Its left button down action:

Figure 5-2: Initial state of the node form
describing properties of individual nodes.

" the layout direction (horizontal or vertical) can be adjusted to an individual

application. Although the design space is limited by the available options in
the forms, it is still possible to use this system to create a prototype to be
further refined on a lower level (ObjTalk).

We have preferred a form-based specification over a specification language
because form-based specification does not require the user to learn a lan-
guage in order to be able to use the tool. An alternative that we will explore
further is a direct manipulation interface [Hutchins, Hollan, Norman 86).
However, the abstract nature of many parameters (e.g., access functions for
nodes, layout direction, distinguishing characteristics of node types) may
make a direct manipulation interface infeasible.

6. The Evolutionary Development of Wiisp

The development of the WLISP system itself has been an incremental evolu-
tionary process in which redesign has played a crucial role. It began many
years ago with the implementation of a window system, and new interface
components have been added incrementally. Ideas for further development
and enhancement originated from the following sources:

e Systems constructed with an existing version of WLISP led to
the development of new features that were at first built from
scratch, quite often by different persons. Subsequently, the
general usability of these features was recognized, and new,
general components were built and integrated into WLISP.

o There was a strong interplay between the development of new
applications and the recognition of the shortcoming of the
available construction blocks and tools. For example, there
was a long-felt need for superwindows and paned windows.
Many applications resulted in special solutions until our under-
standing was good enough to develop them as general classes.

o Other developments of similar systems were carefully analyzed
(e.g., the SMALLTalk system, the Maclntosh, the LISP
machines, expert system shells like KEE, ART and LOOPS).

We believe that this evolutionary process has led to a set of abstractions,
represented as classes in an inheritance network, that represent *‘tools of
thought’’ for the designer and a ‘‘weak theory”’ of user interfaces. Using
the current kit guarantees the development of reasonable interfaces with
modest efforts and supports a redesign methodology.

Even today, the inheritance lattice of WLISP components is not static.
Changes such as moving classes up in the lattice or isolating certain charac-

teristics in separate mixins to increase the amount of shared information, -

reflect our growing understanding of the hierarchical structure and decom-
position of a problem domain. The development of WLISP demonstrates that
ill-structured problem domains, such as user interface and Al programming
[Fischer, Schneider 84}, require the coevolution of specification and im-
plementation to achieve adequate and useful solutions [Swartout, Balzer
82].

7. Evaluation

Observing designers in dealing with complex software systems, one can sec
that they do not engage in redesign processes (even if they would like the
system to behave differently) because redesign is not supported well

- enough. The effort to change a system or to explore design alternatives is

too expensive in most software production environments. Our experience
with our systems and tools makes us believe that if the cost of making
changes is cheap enough, designers will start to experiment thereby gaining
experience and insight leading to better designs. The existence of editors
and formatting systems has shown that the willingness of writers to modify
existing solutions increases.

Reuse and redesign processes in our environment are supported by WLISP
and tools like the browser and TRIKIT. The reaction of designers using these
tools has been largely positive, and a large number of complex systems with
different user interfaces have been built (e.g., the NEWTON-Interface
[Rathke 87]). The increased willingness to redesign has led to the con-
struction of systems which fit an environment of needs. We féel very
strongly that the specification of graphical, dynamic interfaces with a static,
linear description language has severe limitations. Interfaces have a feel
and an aesthetic quality that have to be experienced and that cannot be
derived formally from specification languages. We were able to study
empirically the consequences of specific design choices. Systems that make
use of WLISP's abstractions are relatively easy to modify, maintain and
adapt to changing needs. The object-oriented architecture provides a much
greater flexibility and range of application than traditional subroutine
libraries, which have failed as tools for redesign and reuse, because they are
filled with specific implementations [Balzer, Cheatham, Green 83].

We are, however, aware of problems that remain to be solved. As described
in Section 2, knowing about the existence of components is not trivial,
especially as the number of available components is growing. In Section 4
it remains unclear how the components for building CLASS-NET-WINDOW-
MIXIN have been determined. One can only search for something if one
knows that something like it might exist.

If one has found a potentially useful component, one has to determine how
it has to be used and combined with the other components. One has to
understand its functionality and its properties. Design kits such as TRIKIT
are an attempt at solving this problem. The problem of understanding,
however, remains. The fields of TRIKIT’s forms use a certain terminology,

" which not everybody is familiar with. The design space that is supported by

TRIKIT must be extended to make it a more generally applicable tool.

* We need more active tools or agents that have sufficient self-knowledge to

offer their services. Our active help system [Fischer, Lemke, Schwab

| 85] and our critic [Fischer 87] are other steps in the direction of filling this

need.

8. Conclusions

To cope with the ever-increasing complexity of designing, constructing,
maintaining and enhancing software products, we have to replace discipline
(by the software engineer) with better tools. A formalized, computer-
assisted software paradigm must supersede the current informal, person-
based software paradigm.

We believe that we have made an important step towards this goal. The
classes of WLISP reflect our understanding of how to decompose the domain
of modem user interfaces. WLISP contains many building blocks allowing
existing software to a be reused and supporting design by redesign. Intel-
ligent support tools, guide the user in selecting among the numerous build-
ing blocks. Part of the knowledge about required or useful combinations
about these components can be represented within WLISP itself. In further
development stages of WLISP we will formalize the experts’ knowledge
about the use of components in ObjTalk meta-classes. Meta-classes allow
the representation of structural and behavioral properties of classes. For
instance, the ObjTalk classes that describe paned windows (Figure 4-1) are
instances of a special meta-class WPANE that automatically supplies its
instances with a required set of superclasses.

Design for Redesign is a promising methodology for keeping software
"soft" and preventing it from becoming ossified and brittle with age.
Modification within our methodology is not automated, but it is greatly
facilitated. Redesign of software is similar to interior design of buildings,

where contexts and boundaries are given: in our case contexts and boun-
daries are provided by the components of the construction kit. Made with
this approach, incremental improvements will be cheap enough that
software engineers can experiment with alternative implementations,
thereby gaining experience and insight leading to better designs.

Acknowledgments

The authors would like to thank their former colleagues on the project
INFORM at the University of Stuttgart and their current colleagues and
students in the research group ‘‘Knowledge-based Systets and Human-
Computer Communication’” at the University of Colorado, Boulder, who all
contributed to making WLISP a usable, enjoyable and productivg computa-
tional environment which allows us to explore new methodologies like
redesigning and reusing software.

The research was supported by: grant No. N00014-85-K-0842 from the
Office of Naval Research, grant No. DE-FG02-84ER 1328 from the Depart-
ment of Energy, the German Ministry for Research and Technology, and
Triumph Adler Corporation, Nuemnberg.

References

[Balzer, Cheatham, Green 83]
R, Balzer, T.E. Cheatham, C. Green, Software Technology in the
1990's: Using a New Paradigm, Computer, 1983,

[Barstow, Shrobe, Sandewall 84]
D.R. Barstow, H.E. Shrobe, E. Sandewall, Interactive Program-
'1n9l§§ Environments, McGraw-Hill Book Company, New York,

[Boecker, Fabian, Lemke 85]
H.-D. Boecker, F. Fabian Jr., A.C. Lemke, WLisp: A Window
Based Programming Environment for FranzLisp, Proceedings of
the First Pan Pacific Computer Conference, The Australian Com-
puter Society, Melbourne, Australia, September 1985, pp. 580-595.

{Boecker, Fischer, Nieper 86]
H.-D. Boecker, G, Fischer, H. Nieper, The Enhancement of Under-
standing through Visual Representations, Human Factors in Com-
putilr\\,fz]Jstems, CHI’86 Conference Proceedings (Boston, MA),
ACM, New York, April 1986, pp. 44-50.

[Fabian 86) .
F. Fabian, Fenster- und Menuesysteme in der MCK, in G. Fischer,
R. Gunzenhaeuser (eds.), Methoden und Werkzeuge zur Gestaltung
benutzergerechter Computersysteme, Walter de Gruyter, Berlin -
ll\lglwl\lfgr ,hM\?nsch-Compute'r-Kommunikation Vol. 1, 1986, pp.
-119,ch. V.

{Fischer 87]
G. Fischer, A Critic for LISP, Technical Report, University of
Colorado, Boulder, 1987.

[Fischer, Lemke 87)
G. Fischer, A.C. Lemke, Design Kits: Steps Toward Human
Problem-Domain Communication, Paper submitted to *Human-
Computer Interaction - Special Issue on User Interfaces to Expert
Systems’, University of Colorado, Boulder, 1987,

[Fischer, Lemke, Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help
Systems, Human Factors in Computing Systems, CHI’85 Con-
ference Proceedin7gs (San Francisco, CA), ACM, New York, April
1985, pp. 161-167.

[Fischer, Schneider 84]
G. Fischer, M. Schneider, Knowledge-Based Communication
Processes in Software Engineeriné, Proceedings of the 7th Inter-
national Conference on Software Engineering, Orlando, Florida,
March 1984, pp. 358-368.

[Goldberﬁ 84}
. Goldberg, Smalltalk-80, The Interactive Programming
ﬁzxirfggfnr, Addison-Wesley Publishing Company, Reading,

[Hewitt 77]
C. Hewitt, Viewing Control Structures as Patterns o{ Passing
%%c%a&es, Artificial Intelligence Journal, Vol. 8, 1977, pp.

[Hutchins, Hollan, Norman 86]
E.L. Hutchins, J.D. Hollan, D.A. Norman, Direct Manipulation
Interfaces, in D.A. Norman, §.W. Draper (eds.), User Centered

System Desiir; New I’ersrecu'ves on Human-Computer
Interaction, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ,
1986, pp. 87-124,¢ch. 5.
[Kay 84j B SR

A. Kay, Computer Software, Scientific American, Vol. 251, No. 3,
September 1984, pp. 52-59.

[Nieper 85]
P H. Nieper, TRISTAN: A Generic Display and Editing System for
Hierarchical Structures, Technical Report, Department of Com-
puter Science, University of Colorado, Boulder, 1985.

[Rathke 86]
C. Rathke, ObjTalk: Repraesentation von Wissen in einer objek-
torientierten Sprache, PhD Dissertation, Universitaet Stuttgart,
Fakultaet fuer Mathematik und Informatik, 1986.

[Rathke 87]
C. Rathke, Human-Computer Communication Meets Software
Engineering, Proceedings of the 9th International Conference on
Software Engineering, IEEE, March 1987.

{Simon 81]
H.A. Simon, The Sciences of the Artificial, The MIT Press,
Cambridge, MA, 1981,

[Swartout, Balzer 82}
W.R. Swartout, R. Balzer, On the Inevitable Intertwining of
Specification and Implementation, Communications of the ACM,
\/Fol. S5, No. 7, July 1982, pp. 438-439.

[Winograd 79]
T. Winograd, Beyond Pro ramming Languages, Communications
of the ACM, Vol. 22, No. 7, July 1979, pp. 391-401.

